Uma embalagem em forma de prisma octogonal regular contém uma pizza circular que tangencia as faces do prisma.
Desprezando a espessura da pizza e do material usado na embalagem, a razão entre a medida do raio da pizza e a medida da aresta da base do prisma é igual a:
\(2\sqrt{2}\)
\(\frac{3\sqrt{2}}{4}\)
\(\frac{\sqrt{2}+1}{2}\)
\(2\left(\sqrt{2}-1\right)\)