ITA 2010

Um triângulo equilátero tem os vértices nos pontos A; B e C do plano xOy; sendo B = (2; 1) e C = (5; 5): Das seguintes afirmações:

I. A se encontra sobre a reta y = \(-\frac{3}{4}x+\frac{11}{2}\)

II. A est· na interseção da reta \(y=-\frac{3}{4}x+\frac{45}{8}\) com a circunferência (x 2)2 + (y 1)2 = 25,

III. A pertence as circunferências (x 5)2 + (y 5)2 \(\left(x-\frac{7}{2}\right)^2\) + (y - 3)2 = \(\frac{75}{4}\)

é (são) verdadeira(s)

a

b

II 

c

III 

d

I e II 

e

II e III

Ver resposta
Ver resposta
Resposta
E
Tempo médio
10 min
Resolução
Assine a aio para ter acesso a esta e muitas outras resoluções
Mais de 250.000 questões com resoluções e dados exclusivos disponíveis para alunos aio.
Tudo com nota TRI em tempo real
Saiba mais
Esta resolução não é pública. Assine a aio para ter acesso a essa resolução e muito mais: Tenha acesso a simulados reduzidos, mais de 200.000 questões, orientação personalizada, video aulas, correção de redações e uma equipe sempre disposta a te ajudar. Tudo isso com acompanhamento TRI em tempo real.
Dicas
expand_more
expand_less
Dicas sobre como resolver essa questão
Erros Comuns
expand_more
expand_less
Alguns erros comuns que estudantes podem cometer ao resolver esta questão
Conceitos chave
Conceitos chave sobre essa questão, que pode te ajudar a resolver questões similares
Estratégia de resolução
Uma estratégia sobre a forma apropriada de se chegar a resposta correta
Depoimentos
Por que os estudantes escolhem a aio
Tom
Formando em Medicina
A AIO foi essencial na minha preparação porque me auxiliou a pular etapas e estudar aquilo que eu realmente precisava no momento. Eu gostava muito de ter uma ideia de qual era a minha nota TRI, pois com isso eu ficava por dentro se estava evoluindo ou não
Sarah
Formanda em Medicina
Neste ano da minha aprovação, a AIO foi a forma perfeita de eu entender meus pontos fortes e fracos, melhorar minha estratégia de prova e, alcançar uma nota excepcional que me permitiu realizar meu objetivo na universidade dos meus sonhos. Só tenho a agradecer à AIO ... pois com certeza não conseguiria sozinha.
A AIO utiliza cookies para garantir uma melhor experiência. Ver política de privacidade
Aceitar