Sejam as matrizes A = (aij)2x2 com (aij) = 3i + 2j e B = (bij)2x2 com (bij) = i + j.
Dadas essas condições, o valor do detC onde C = at + B-1 é igual a:
- 102
102
- 100
100
101
Precisamos calcular o determinante de \(C\), onde
\[C = A^{\mathrm{T}} + B^{-1}\]
As matrizes dadas s (ordem \(2\times2\)):
Para \(i,j\in\{1,2\}\):
\(a_{11}=3\cdot1+2\cdot1=5\)
\(a_{12}=3\cdot1+2\cdot2=7\)
\(a_{21}=3\cdot2+2\cdot1=8\)
\(a_{22}=3\cdot2+2\cdot2=10\)
Logo
\[A=\begin{bmatrix}5&7\\8&10\end{bmatrix}\quad\Rightarrow\quad A^{\mathrm{T}}=\begin{bmatrix}5&8\\7&10\end{bmatrix}.\]
Para \(B\):
\(b_{11}=2\ ,\ b_{12}=3\ ,\ b_{21}=3\ ,\ b_{22}=4\)
\[B=\begin{bmatrix}2&3\\3&4\end{bmatrix}.\]
Determinante de \(B\): \(\det(B)=2\cdot4-3\cdot3=8-9=-1\).
Para matriz \(2\times2\),
\[B^{-1}=\frac1{\det(B)}\begin{bmatrix}d&-b\\-c&a\end{bmatrix}=\frac1{-1}\begin{bmatrix}4&-3\\-3&2\end{bmatrix}=\begin{bmatrix}-4&3\\3&-2\end{bmatrix}.\]
Somando termo a termo:
\[C=A^{\mathrm{T}}+B^{-1}=\begin{bmatrix}5&8\\7&10\end{bmatrix}+\begin{bmatrix}-4&3\\3&-2\end{bmatrix}=\begin{bmatrix}1&11\\10&8\end{bmatrix}.\]
Para \(2\times2\): \(\det(C)=1\cdot8-11\cdot10=8-110=-102\).
\(\det(C)=-102\). Alternativa A.