Seja a matriz \(M=\left(\begin{matrix}sen\theta&cos\theta\\tan\theta&sec\theta\end{matrix}\right)\) Para θ = 3300 , então M é :
\(\left(\begin{matrix}-\frac{1}{2}&\frac{\sqrt{3}}{2}\\-\frac{\sqrt{3}}{3}&\frac{2\sqrt{3}}{3}\end{matrix}\right)\)
\(\left(\begin{matrix}\frac{1}{2}&-\frac{\sqrt{3}}{2}\\\frac{\sqrt{3}}{3}&-\frac{2\sqrt{3}}{3}\end{matrix}\right)\)
\(\left(\begin{matrix}-\frac{1}{2}&-\frac{\sqrt{3}}{2}\\\frac{\sqrt{3}}{3}&\frac{2\sqrt{3}}{3}\end{matrix}\right)\)
\(\left(\begin{matrix}-\frac{1}{2}&\frac{\sqrt{3}}{2}\\-\frac{\sqrt{3}}{3}&-\frac{2\sqrt{3}}{3}\end{matrix}\right)\)
\(\left(\begin{matrix}0,5&0\\0&\frac{1}{2}\end{matrix}\right)\)