Se x e y são números reais positivos, então a expressão
\(\sqrt[log]{\frac{x^4+y^3}{x^3\sqrt{y}}}\)
é igual a:
\(\frac{1}{2}log\left(x^4\right)log\left(y^3\right)-\frac{3}{2}log\ x-\frac{1}{4}log\ y\)
\(\frac{1}{2}log\left(x^4\right)+\frac{1}{2}log\left(y^3\right)-\frac{3}{2}log\ x-\frac{1}{4}log\ y\)
\(\frac{1}{2}log\left(x^4+y^3\right)+\frac{3}{2}log\ x+\frac{1}{4}log\ y\)
\(\frac{1}{2}log\left(x^4\right)+\frac{1}{2}log\left(y^3\right)+\frac{3}{2}log\ x+\frac{1}{4}log\ y\)
\(\frac{1}{2}log\left(x^4+y^3\right)-\frac{3}{2}log\ x-\frac{1}{4}log\ y\)