ESPM 2014/1

Se log x + log x² + log x³ + log x= –20 , o valor de x é:
a
10
b
0,1
c
100
d
0,01
e
1
Ver resposta
Ver resposta
Resposta
D

Resolução

Para resolver \(\log x + \log x^2 + \log x^3 + \log x^4 = -20\), aplique as propriedades dos logaritmos.

1. Fator comum: todos os logaritmos têm a mesma base (10). Some os expoentes: \[\log x + \log x^2 + \log x^3 + \log x^4 = \log\bigl(x\cdot x^2 \cdot x^3 \cdot x^4\bigr).\]
2. Multiplicando as potências: \[x\cdot x^2 \cdot x^3 \cdot x^4 = x^{1+2+3+4} = x^{10}.\] Assim, a equação torna-se \[\log \bigl(x^{10}\bigr) = -20.\]
3. Definição de logaritmo: se \(\log a = b\) então \(a = 10^b\). Logo \[x^{10} = 10^{-20}.\]
4. Extraia a décima raiz: \[x = \bigl(10^{-20}\bigr)^{\frac1{10}} = 10^{-2} = 0{,}01.\]
Portanto, \(x = 0{,}01\). A alternativa correta é a letra D.

Dicas

expand_more
Reescreva a soma de logaritmos como um único logaritmo de um produto.
Observe que o produto das potências de x resulta em uma potência única.
Use \(\log A = B \Rightarrow A = 10^B\) para isolar x.

Erros Comuns

expand_more
Somar os expoentes, mas esquecer que isso acontece no argumento, não fora do log.
Esquecer de transformar \(\log a = b\) em \(a = 10^b\).
Calcular somente parte dos termos (ex.: parar em \(x^6\) ao invés de \(x^{10}\)).
Revisão
• Propriedade da soma de logaritmos: \(\log a + \log b = \log (a\,b)\) (mesma base).
• Potência no argumento: \(\log a^n = n\,\log a\).
• Definição: \(\log_{10} A = B \iff A = 10^B\).
Transforme seus estudos com a AIO!
Estudantes como você estão acelerando suas aprovações usando nossa plataforma de IA + aprendizado ativo.
+25 pts
Aumento médio TRI
4x
Simulados mais rápidos
+50 mil
Estudantes
Rejandson, vestibulando
Eu encontrei a melhor plataforma de estudos para o Enem do Brasil. A AIO é uma plataforma inovadora. Além de estudar com questões ela te dá a TRI assim que você termina.
Jonas de Souza
As correções de redações e as aulas são bem organizadas e é claro os professores são os melhores com a melhor metodologia de ensino, sem dúvidas contribuiu muito para o aumento de 120 pontos na minha média final!
Mariana Scheffel
AIO foi fundamental para a evolução do meu número de acertos e notas, tanto no ENEM quanto em outros vestibulares, fornecendo os recursos e as ferramentas necessárias para estudar de forma eficaz e melhorar minhas notas.
A AIO utiliza cookies para garantir uma melhor experiência. Ver política de privacidade
Aceitar