UERJ 2019/1

O Tangram é um quebra-cabeça chinês que contém sete peças: um quadrado, um paralelogramo e cinco triângulos retângulos isósceles. Na figura, o quadrado ABCD é formado com as peças de um Tangram.

Observe os seguintes componentes da figura:

• NP – lado do quadrado;

• AM – lado do paralelogramo;

• CDR e ADR – triângulos congruentes, bem como CNP e RST.

A razão entre a área do trapézio AMNP e a área do quadrado ABCD equivale a:

a

\(\frac{3}{32}\)

b

\(\frac{5}{32}\)

c

\(\frac{3}{16}\)

d

\(\frac{5}{16}\)

Ver resposta
Ver resposta
Resposta
D
Resolução
Assine a aio para ter acesso a esta e muitas outras resoluções
Mais de 250.000 questões com resoluções e dados exclusivos disponíveis para alunos aio.
Tudo com nota TRI em tempo real
Saiba mais
Esta resolução não é pública. Assine a aio para ter acesso a essa resolução e muito mais: Tenha acesso a simulados reduzidos, mais de 200.000 questões, orientação personalizada, video aulas, correção de redações e uma equipe sempre disposta a te ajudar. Tudo isso com acompanhamento TRI em tempo real.
Dicas
expand_more
expand_less
Dicas sobre como resolver essa questão
Erros Comuns
expand_more
expand_less
Alguns erros comuns que estudantes podem cometer ao resolver esta questão
Conceitos chave
Conceitos chave sobre essa questão, que pode te ajudar a resolver questões similares
Estratégia de resolução
Uma estratégia sobre a forma apropriada de se chegar a resposta correta
Depoimentos
Por que os estudantes escolhem a aio
Tom
Formando em Medicina
A AIO foi essencial na minha preparação porque me auxiliou a pular etapas e estudar aquilo que eu realmente precisava no momento. Eu gostava muito de ter uma ideia de qual era a minha nota TRI, pois com isso eu ficava por dentro se estava evoluindo ou não
Sarah
Formanda em Medicina
Neste ano da minha aprovação, a AIO foi a forma perfeita de eu entender meus pontos fortes e fracos, melhorar minha estratégia de prova e, alcançar uma nota excepcional que me permitiu realizar meu objetivo na universidade dos meus sonhos. Só tenho a agradecer à AIO ... pois com certeza não conseguiria sozinha.
A AIO utiliza cookies para garantir uma melhor experiência. Ver política de privacidade
Aceitar