O galinho do tempo é um bibelô, na forma de um pequeno galo, que, dependendo das condições meteorológicas daquele instante, pode mudar de cor, passando de azul para rosa e vice-versa. O íon [CoCl4]-2 (aq) apresenta cor azul e o íon [Co(H2O)6]2+ apresenta cor rosa. A equação envolvida nesse processo é representada por
[CoCl4]2- (aq) + 6H2O(l) ↔ [CO(H2O)6]2+ (aq) + 4Cl- (aq)
Segundo o Princípio de Le Chatelier, a cor do “galinho” em um dia de sol e a expressão da constante de equilíbrio de ionização são, respectivamente,
azul e \(K=\frac{\left[\left[CoC\ell_4\right]^{2-}\right]}{\left[\left[Co\left(H_2O\right)_6\right]^{2+}\right]\cdot\left[C\ell^-\right]^4}\)
azul e \(K=\frac{\left[\left[Co\left(H_2O\right)_6\right]^{2+}\right]\cdot\left[C\ell^-\right]^4}{\left[\left[CoC\ell_4\right]^{2-}\right]}\)
rosa e \(K=\frac{\left[\left[CoC\ell_4\right]^{2-}\right]\cdot\left[H_2O\right]^6}{\left[\left[Co\left(H_2O\right)_6\right]^{2+}\right]\cdot\left[C\ell^-\right]^4}\)
rosa e \(K=\frac{\left[\left[Co\left(H_2O\right)_6\right]^{2+}\right]\cdot\left[C\ell^-\right]^4}{\left[\left[CoC\ell_4\right]^{2-}\right]\cdot\left[H_2O\right]^6}\)
azul e \(K=\frac{\left[\left[Co\left(H_2O\right)_6\right]^{2+}\right]\cdot\left[C\ell^-\right]^4}{\left[\left[CoC\ell_4\right]^{2-}\right]\cdot\left[H_2O\right]^6}\)