Determine uma matriz invertível P que satisfaça a equação \(P^{-1}.A=\left[\begin{matrix}5&0\\0&-2\end{matrix}\right],\) sendo \(A=\left[\begin{matrix}1&-2\\3&3\end{matrix}\right].\)
\(P=\left[\begin{matrix}\frac{5}{3}\\\frac{2}{3}\end{matrix}\begin{matrix}\frac{10}{9}\\-\frac{2}{9}\end{matrix}\right]\)
\(P=\left[\begin{matrix}2&10\\6&-15\end{matrix}\right]\)
\(P=\frac{1}{10}\left[\begin{matrix}2&10\\3&-3\end{matrix}\right]\)
\(P=\left[\begin{matrix}-\frac{2}{9}&-\frac{2}{3}\\-\frac{10}{9}&\frac{5}{3}\end{matrix}\right]\)
\(P=\left[\begin{matrix}\frac{1}{5}&1\\\frac{3}{5}&-\frac{3}{2}\end{matrix}\right]\)