As figuras indicam uma sequência de empilhamentos de cubos de 1 cm3. Da primeira pilha em diante, os volumes das pilhas, em cm3, são iguais a 1, 5, 14, 30, 55, e assim sucessivamente.
Sabe-se que a soma 1 + 22 + 32 + 42 + 52 + ... + x2 é um polinômio do terceiro grau, dado por P(x) = mx3 + nx2 + px, com m, n e p racionais. Portanto, P(1) = 1, P(2) = 5, P(3) = 14, P(4) = 30 e assim por diante. Nas condições dadas, m é igual a
\(\frac{1}{2}\)
\(\frac{5}{6}\)
\(\frac{2}{3}\)
\(\frac{1}{6}\)
\(\frac{1}{3}\)