A soma \(\sum_{n=1}^4\frac{log_{1/2}\sqrt[n]{32}}{log_{1/2}8^{n+2}}e\ igual\ a\)
\(\frac{8}{9}\).
\(\frac{14}{15}\).
\(\frac{15}{16}\).
\(\frac{17}{18}\).
1.
Seja
\[S=\sum_{n=1}^{4}\frac{\log_{1/2}\sqrt[n]{32}}{\log_{1/2}8^{n+2}}.\]Para cada \(n\):
\[\sqrt[n]{32}=32^{1/n}\Rightarrow\log_{1/2}\sqrt[n]{32}=\frac{1}{n}\,\log_{1/2}32.\]O quociente de logaritmos na mesma base independe da base:
\[ \frac{\log_{1/2}32}{\log_{1/2}8}=\frac{\ln32}{\ln8}=\frac{5\ln2}{3\ln2}=\frac{5}{3}. \]Logo,
\[R_n=\frac{5}{3}\,\frac{1}{n(n+2)}.\]Para telescopar, decomponha:
\[ \frac{1}{n(n+2)}=\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+2}\right). \]Então
\[ \sum_{n=1}^{4}\frac{1}{n(n+2)}=\frac{1}{2}\sum_{n=1}^{4}\left(\frac{1}{n}-\frac{1}{n+2}\right). \]Escrevendo termo a termo:
\[ \begin{aligned} &n=1:& \;1-\frac{1}{3}=\frac{2}{3}\\ &n=2:& \;\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\\ &n=3:& \;\frac{1}{3}-\frac{1}{5}=\frac{2}{15}\\ &n=4:& \;\frac{1}{4}-\frac{1}{6}=\frac{1}{12} \end{aligned} \]Somando:
\[ \frac{2}{3}+\frac{1}{4}+\frac{2}{15}+\frac{1}{12}=\frac{17}{15}. \]Multiplicando pelo \(\tfrac{1}{2}\):
\[ \sum_{n=1}^{4}\frac{1}{n(n+2)}=\frac{17}{30}. \]Portanto, a soma vale \(\boxed{\dfrac{17}{18}}\).