UNICENTRO 2009/1

A solução da equação 1 + cos x + sen2x = 0 , sabendo-se que 0 ≤ x ≤ 2 é igual a

a

0

b

\(\frac{\pi}{2}\)

c

π

d

\(\frac{3\pi}{2}\)

e

Ver resposta
Ver resposta
Resposta
C
Tempo médio
5 min

Resolução

A equação é

\[1+\cos x+\sin ^2x=0\]

Como \(\sin ^2x=1-\cos ^2x\), substituímos:

\[1+\cos x+(1-\cos ^2x)=0\]

Simplificando:

\[2+\cos x-\cos ^2x=0\]

Multiplicando por \(-1)\) para obter um quadrático "padrão":

\[\cos ^2x-\cos x-2=0\]

Faça \(t=\cos x\). Temos:

\[t^2-t-2=0\]

Fatorando:

\[(t-2)(t+1)=0\]

Logo, \(t=2\) ou \(t=-1\).

  • \(t=2\) não é possível pois \(-1\le\cos x\le1\).
  • Resta \(\cos x=-1\).

No intervalo \(0\le x\le 2\pi\), a única solução que satisfaz \(\cos x=-1\) é

\[x=\pi\]

Portanto, a alternativa correta é C.

Dicas

expand_more
Reescreva \(\sin^2x\) em função de \(\cos x\).
Você deverá chegar a um polinômio quadrático em \(\cos x\).
Lembre-se de que \(-1\le \cos x\le1\).

Erros Comuns

expand_more
Esquecer de aplicar a identidade \(\sin^2x=1-\cos^2x\) e tentar isolar \(x\) diretamente.
Aceitar \(t=2\) como solução sem lembrar que \(\cos x\) não ultrapassa 1.
Confundir os pontos em que \(\cos x=-1\) (\(x=\pi\)) com aqueles onde \(\cos x=0\) (\(x=\frac{\pi}{2},\frac{3\pi}{2}\)).
Revisão

Identidades trigonométricas básicas

  • \(\sin ^2x+\cos ^2x=1\Rightarrow\sin ^2x=1-\cos ^2x\).

Equações trigonométricas

  • Transformar a equação para envolver apenas uma das funções (\(\cos\) ou \(\sin\)).
  • Reduzir a um polinômio usando substituição \(t=\cos x\) (ou \(t=\sin x\)).
  • Verificar se as raízes obtidas estão no intervalo válido \([-1,1]\).
  • Traduzir o valor de \(t\) de volta para os possíveis ângulos dentro do intervalo solicitado.
Transforme seus estudos com a AIO!
Estudantes como você estão acelerando suas aprovações usando nossa plataforma de IA + aprendizado ativo.
+25 pts
Aumento médio TRI
4x
Simulados mais rápidos
+50 mil
Estudantes
Sarah
Neste ano da minha aprovação, a AIO foi a forma perfeita de eu entender meus pontos fortes e fracos, melhorar minha estratégia de prova e, alcançar uma nota excepcional que me permitiu realizar meu objetivo na universidade dos meus sonhos. Só tenho a agradecer à AIO ... pois com certeza não conseguiria sozinha.
Débora Adelina
O que mais gostei foi a forma como a plataforma seleciona matérias em que tenho mais dificuldade, ajudando a focar no que realmente preciso de atenção. Ainda não consegui minha aprovação, mas contarei com a AIO por mais um ano pois a plataforma me aproximou desse objetivo tornando meus estudos mais direcionados!
Joice Neves
Faltavam 3 meses para o ENEM, eu estava desesperada e mentalmente fragilizada por não ver os resultados do meu esforço. Então, eu encontrei a AIO e, em 3 meses, eu consegui aumentar a minha nota média em 50 pontos. Meses depois, fui aprovada no curso que eu tanto desejei. Esse sonho se tornou real graças à AIO.
A AIO utiliza cookies para garantir uma melhor experiência. Ver política de privacidade
Aceitar